
Guía Materia 2023 / 2024

	TIFICATIVOS	/		
	cos y Comportamiento Neuronal. Introduccio	on a las Canalopatio	as	
Asignatura	Canales Iónicos y			
	Comportamiento			
	Neuronal.			
	Introducción a las			
C 4 all av a	Canalopatías			
Código	V02M099V01219			
Titulacion	Máster			
	Universitario en			
	Neurociencia			
Descriptores	Creditos ECTS	Seleccione	Curso	Cuatrimestre
	3	OP	1	<u>2c</u>
Lengua	Castellano			
Impartición				
Departamento	Biología funcional y ciencias de la salud			
Coordinador/a	Lamas Castro, José Antonio			
Profesorado	Lamas Castro, José Antonio			
Correo-e	antoniolamas@uvigo.es			
Web				
Descripción	En la primera parte de esta materia se aprender	án las técnicas de inv	estigación de lo	s canales iónicos,
general	técnicas de fijación de voltaje y de "Patch-clamp			
	diferentes tipos de canales iónicos modelan el c			
	celular. Habrá un apartado práctico en el que se			
	con simuladores matemáticos.			-

Resultados de Formación y Aprendizaje

Código

- A1 Poseer y comprender conocimientos que aporten una base u oportunidad de ser originales en el desarrollo y/o aplicación de ideas, a menudo en un contexto de investigación.
- A2 Que los estudiantes sepan aplicar los conocimientos adquiridos y su capacidad de resolución de problemas en entornos nuevos o poco conocidos dentro de contextos más amplios (o multidisciplinares) relacionados con su área de estudio.
- A3 Que los estudiantes sean capaces de integrar conocimientos y enfrentarse a la complejidad de formular juicios a partir de una información que, siendo incompleta o limitada, incluya reflexiones sobre las responsabilidades sociales y éticas vinculadas a la aplicación de sus conocimientos y juicios.
- A4 Que los estudiantes sepan comunicar sus conclusiones, y los conocimientos y razones últimas que las sustentan, a públicos especializados y no especializados de un modo claro y sin ambigüedades.
- A5 Que los estudiantes posean las habilidades de aprendizaje que les permitan continuar estudiando de un modo que habrá de ser en gran medida autodirigido o autónomo.

Resultados previstos en la materia	
Resultados previstos en la materia	Resultados de
	Formación y
	Aprendizaje
Saber como funciona una neurona	A2
	A5
Saber relacionar las propiedades de la membrana con el comportamiento neuronal	A1
	A2
Saber cómo se hace un experimento de electrofisiología	A4
Saber relacionar cada tipo de canal iónico con su efecto en el comportamiento de la neurona	A5
Saber las nociones básicas de las canalopatías	A3

Contenidos	
Tema	

Breve recorrido histórico	El papiro quirúrgico: Imhotep y Edwin Smith. La electricidad animal:
	Galvani y Volta. Matteucci y du Bois. La neurona: Golgi y Cajal.
	Electroencefalograma: Caton y Berger. Registro individual: Eccles. El axón
	del calamar: Hodgkin y Huxley. Los canales: Neher y Sakmann.
Técnica de control del voltaje	Técnica clásica de fijación de voltaje. Base iónica del potencial de acción.
	Experimentos de sustitución iónica. Curvas intensidad-voltaje. Potencial de
	inversión.
Técnica de Patch-clamp	Modalidades de Patch-clamp. Soluciones de baño y pipeta. Equipo básico
	de patch. Problemas asociados al Patch. Utilidades de la técnica de patch.
	Preparaciones para Patch. Técnicas relacionadas y asociadas al patch-
	clamp. Novedades de la técnica.
Canales de sodio voltaje-dependientes	Tipos. Estructura. Propiedades eléctricas. Farmacología. Función.
	Canalopatías relacionadas.
Canales de potasio voltaje-dependientes	Canales de potasio rectificadores tardíos, tipo A, Tipo M. Estructura.
	Propiedades eléctricas. Farmacología. Función. Canalopatías relacionadas
Canales de potasio calcio-dependientes	Canales de potasio calcio-dependientes de baja conductancia (tipo SK).
	Canales de conductancia intermedia (IK). Canales de potasio calcio-
	dependientes de alta conductancia (tipo BK). Estructura. Propiedades
	eléctricas. Farmacología. Función. Canalopatías relacionadas_
Canales de potasio de fuga (K2P)	Tipos. Estructura. Propiedades eléctricas. Farmacología. Función.
	Canalopatías relacionadas.
Canales de potasio rectificadores de entrada (Kir)	Tipos. Estructura. Propiedades eléctricas. Farmacología. Función.
	Canalopatías relacionadas.
Canales de calcio voltaje-dependientes	Tipos. Estructura. Propiedades eléctricas. Farmacología. Función.
	Canalopatías relacionadas. Canales de calcio de bajo umbral tipo T.
	Canales de calcio de alto umbral tipo L, N, P/Q y R.
Canales dependientes de ligando	Tipos. Estructura. Propiedades eléctricas. Farmacología. Función.
	Canalopatías relacionadas. Receptores de acetilcolina nicotínicos.
	Receptores de glutamato ionotrópicos. Receptores de GABA.

Planificación			
	Horas en clase	Horas fuera de clase	Horas totales
Lección magistral	20	35	55
Talleres	0	5	5
Prácticas con apoyo de las TIC	4	8	12
Examen de preguntas objetivas	1.5	0	1.5
Examen de preguntas objetivas	1.5	0	1.5

^{*}Los datos que aparecen en la tabla de planificación son de carácter orientativo, considerando la heterogeneidad de alumnado

Metodologías	
	Descripción
Lección magistral	Sesiones de 50 minutos tres veces a la semana. Se utilizarán figuras de Power-Point
Talleres	Visita al laboratorio de neurociencia, una mañana o una tarde, para ver un experimento de cultivo neuronal o bien un experimento de electrofisiología real.
Prácticas con apoyo de las TIC	Estudio del papel de los canales iónicos en el comportamiento neuronal. Experimentos de fijación de corriente simulados por ordenador. Utilizaremos el programa Neuron de Huguenard y McCormick. 2 horas
	Estudio de las corrientes iónicas a través de la membrana. Experimentos de fijación de voltaje simulados por ordenador. Utilizaremos el programa Neuron de Huguenard y McCormick. 2 horas

Atención personalizada	
Metodologías	Descripción
Lección magistral	Se responderán las cuestiones individuales de cada alumno
Prácticas con apoyo de las TIC	Se ayudará al alumno a manejar los programas informáticos.
Talleres	Los alumnos asistirán a un experimento real de dos en dos y se les explicará todo el proceso

Evaluación	
Descripción	CalificaciónResultados de
	Formación y
	Aprendizaje

Talleres	Se evaluará la asistencia del alumno a un experimento real en el laboratorio de neurociencia de la UVIGO. La asistencia debe ser al menos de una mañana o una tarde. Representará el 10% de la nota final.	10	A1 A2 A3 A4 A5
Prácticas con apoyo de las Ti	La asistencia a las prácticas es obligatoria. Se evaluará una pequeña memoria C con la respuesta a las preguntas que aparecen en los guiones de prácticas. Representará el 10% de la nota final	10	A1 A2 A3 A4 A5
Examen de preguntas objetivas	La primera parte de la materia tendrá los contenidos generales y de técnicas electrofisiológicas necesarios para entender la segunda parte. Se evaluará el conocimiento adquirido con un examen test con cuatro opciones y solo una correcta. Las preguntas mal contestadas contarán negativo. Representará el 40% de la nota final.	40	
Examen de preguntas objetivas	La segunda parte de la materia repasará los grupos de canales iónicos más representativos. Se evaluará el conocimiento adquirido con un examen test con cuatro opciones y solo una correcta. Las preguntas mal contestadas contarán negativo. Representará el 40% de la nota final.	40	

Otros comentarios sobre la Evaluación

Para aprobar la materia es necesario obtener un 5 sobre 10. Todas las actividades son obligatorias.

Fuentes de informac

Bibliografía Básica

Ashcroft FM, Ion channels and disease, Academic Press,

Hille B, Ion channels of excitable membranes, Sinauer Associates,

Kandel, Schwartz y Jessell, Principios de neurociencia, McGraw-Hill-Interamericana,

Bibliografía Complementaria

Aidley and Stanfield, Ion channels. Molecules in action, Cambridge University Press,

Hammond, Cellular and molecular neurophysiology, Academic Press,

Huguenard and McCormick, Electrophysiology of the neuron. An interactive tutoria, Oxford University Press,

Molleman, Patch Clamping. An introductory guide to patch clamp electrophysiology, Wiley,

Sakmann and Neher, Single-Channel recording, Plenum Press,

Wallis, Electrophysiology. A practical approach, Oxford University Press,

Recomendaciones

Asignaturas que se recomienda cursar simultáneamente

Técnicas Electrofisiológicas/V02M099V01221

Asignaturas que se recomienda haber cursado previamente

Fisiología del Sistema Nervioso/V02M099V01104