Universida_{de}Vigo

Guía Materia 2017 / 2018

	TIFICATIVOS			
Geología: Ge				
Asignatura	Geología:			
0/-11	Geología			
Código	V11G200V01205			
Titulacion	Grado en Química	<u> </u>		
Descriptores	Creditos ECTS	Seleccione	Curso	Cuatrimestre
1	6	FB	1	2c
Lengua	Castellano			
Impartición				
	Geociencias marinas y ordenación del territorio			
Profesorado	Gago Duport, Luís Carlos			
	Gago Duport, Luís Carlos			
Correo-e	duport@uvigo.es			
Web	http://faitic.uvigo.es			
Descripción	El estudio de la estructura de la materia en estado cristalino, objetivo de la Cristalografía, es de relevancia			
general	para la comprensión de los fenómenos más diver			
	planteamiento de la Geología de primer curso del grado en Química está preferentemente orientado hacia el			
	conocimiento y caracterización de las estructuras cristalinas y de los mecanismos de cristalización que se			
	abordan desde el punto de vista de la Cristalografía, la Mineralogía y la Geoquímica. De manera particular,			
	las técnicas de difracción se han convertido en las más difundidas entre los investigadores químicos para la caracterización y determinación de estructuras de las más diversas sustancias: materiales superconductores,			
	minerales, compuestos orgánicos, inorgánicos, productos farmacéuticos, macromoléculas biológicas, y			
	materiales cerámicos, entre otros, por ello en el curso se sientan, desde un punto de vista introductorio e			
	intuitivo, las bases de la difracción y se muestran las principales técnicas experimentales asociadas al			
	proceso de caracterización de sólidos cristalinos.			

Competencias

Código

- Demostrar conocimiento y comprensión de hechos esenciales, conceptos, principios y teorías en: aspectos principales de la terminología química, nomenclatura, conversiones y unidades.
- Demostrar conocimiento y comprensión de hechos esenciales, conceptos, principios y teorías en: relación entre propiedades macroscópicas y propiedades de átomos y moléculas individuales, incluyendo las macromoléculas
- C27 Monitorizar, mediante observación y medida de propiedades físicas y químicas, sucesos o cambios y documentarlos y registrarlos de manera sistemática y fiable
- D1 Comunicarse de forma oral y escrita en al menos una de las lenguas oficiales de la Universidad
- D3 Aprender de forma autónoma
- D4 Buscar y gestionar información procedente de distintas fuentes
- D5 Utilizar las tecnologías de la información y de las comunicaciones y manejar herramientas informáticas básicas
- D7 Aplicar los conocimientos teóricos a la práctica
- D8 Trabajar en equipo
- D9 Trabajar de forma autónoma
- D12 Planificar y gestionar adecuadamente el tiempo
- D13 Tomar decisiones
- D14 Analizar y sintetizar información y obtener conclusiones
- D15 Evaluar de modo crítico y constructivo su entorno y a sí mismo

Resultados de aprendizaje	
Resultados previstos en la materia	Resultados de Formación
	y Aprendizaje
3. Comprender las bases de la cristalografía geométrica como medio para la caracterización	D1
estructural de los sólidos cristalinos, incluyendo los conceptos básicos como periodicidad y	D3
simetría.	D5
	D9
	D12

5. Conocer los aspectos básicos de la notación cristalográfica y su aplicación a la caracterización tanto de la simetría en las moléculas (Schoenflies) como a la caracterización estructural de los cristales (Hermann-Mauguin).	C1	D1 D7 D8 D13 D14
6. Entender los principios básicos de la difracción como técnica para el análisis estructural y los conceptos cristalográficos asociados: Ley de Bragg, celda recíproca, problema de las fases.	C1 C14	D15 D1 D3 D5 D9 D15
10. Entender los procesos de intercambio isotópico en sólidos cristalinos y conocer sus aplicaciones para la medida del tiempo geológico y como marcadores de condiciones termodinámicas y cinéticas.	C1	D1 D4 D5 D15
7. Adquirir un conocimiento básico sobre los principios para la determinación estructural mediante diagramas de difracción de rayos.	2	D1 D4 D5 D9 D15
6. Entender los principios básicos de la difracción como técnica para el análisis estructural y los conceptos cristalográficos asociados: Ley de Bragg, celda recíproca, problema de las fases.	C1	D1 D5 D7 D15
5. Conocer los aspectos básicos de la notación cristalográfica y su aplicación a la caracterización tanto de la simetría en las moléculas (Schoenflies) como a la caracterización estructural de los cristales (Hermann-Mauguin).	C1	D1 D5 D7 D14 D15
1. Conocer y comprender, la cristalización como un proceso de transición de fase, diferenciando la etapas de nucleación y crecimiento cristalino.	isC1	D1 D3 D9 D14 D15
8. Conocer de forma básica la información derivada de las distintas técnicas de difracción : R-X, electrones, neutrones y sus principales aplicaciones en el ámbito de la ciencia de materiales y de la caracterización molecular.	C1	D14 D15
9. Adquirir una experiencia práctica en el manejo de programas de difracción y en la interpretación de imágenes de microscopía electrónica diferenciado la información estructural (HREM, SAED) y morfológica (SEM).	nC1 C27	D1 D4 D5 D8 D15
1. Conocer y comprender, el funcionamiento de la Tierra como sistema.	C1	D1 D3 D9 D12 D15
2. Ser capaz de caracterizar la interacción entre los diferentes reservorios, los procesos físicos, químicos y biológicos involucrados así como las diferentes escalas espacio-temporales asociadas.	C1	D1 D4 D7 D9 D13 D15
(*)	C1	D1 D3 D7 D8 D14 D15
(*)	C1	D1 D3 D4 D7 D15
Contenidos		

El proceso de cristalización	Aspectos termodinámicos de la nucleación y crecimiento cristalino.
	Cinética del crecimiento cristalino. Factores estructurales asociados.
Los sólidos cristalinos	Estructura cristalina. Aspectos microscópicos. Morfología cristalina:
	aspectos macroscópicos.
Conceptos básicos de cristalografía geométrica	Periodicidad y simetría. Redes bidimensionales. Grupos de simetría
	puntual. Notaciones de Schoenflies y Hermann-Mauguin.
Redes tridimensionales	Grupos espaciales. Índices de Miller. Coordenadas fraccionarias y ejes de
	zona.
Cristalografía de rayos X	La red recíproca. Transformada de Fourier y difracción en el espacio
	recíproco.
Técnicas de difracción	Métodos de monocristal y de polvo. Espectros de difracción de rayos X:
	Ley de Bragg. Esfera de Ewald. Factor de estructura. El problema de la
	fase.
Interpretación de espectros de difracción	Análisis de diagramas de difracción de polvo. Determinación estructural
	mediante microscopia electrónica de alta resolución (HREM). Métodos de
	caracterización de materiales no cristalinos.
Algunas aplicaciones de las técnicas de difracció	n Caracterización de materiales cerámicos y aleaciones. Determinación de la
	estructura de proteínas. Análisis textural de materiales amorfos y
	muestras biológicas. Seguimiento en tiempo real de transiciones de fase.
Crecimiento de cristales en medios naturales	Biomineralización. Ambientes evaporíticos. Modelos de predicción de
	precipitación de fases cristalinas.
Geocronología	Isótopos radiactivos. Estabilidad nuclear. Mecanismos de descomposición.
	Vida media. Sistemas de datación temporal: K-Ar, Rb-Sr, Sm-Nd, U-Th-Pb,
	14C. Otros métodos de datación: huellas de fisión.
Isótopos estables en Geología	Relación isotópica. Factores que determinan el fraccionamiento isotópico.
	Aplicaciones como marcadores cinéticos y termodinámicos de procesos
	geoquímicos.

Planificación				
	Horas en clase	Horas fuera de clase	Horas totales	
Trabajos tutelados	2	13	15	
Sesión magistral	26	52	78	
Resolución de problemas y/o ejercicios	13	26	39	
Otros	0	14	14	
Pruebas de tipo test	4	0	4	

^{*}Los datos que aparecen en la tabla de planificación son de carácter orientativo, considerando la heterogeneidad de alumnado

Metodologías	
	Descripción
Trabajos tutelados	Son trabajos que realiza cada alumno de manera individual y consistirán en la caracterización cristalográfica de una sustancia cristalina en los aspectos estructurales, composicionales y morfológicos. Adoptan el formato de un pequeño trabajo de investigación y llevan implícito el conocimiento y manejo de los conceptos y nomenclatura explicados en las clases teóricas y seminarios.
Sesión magistral	Se explican los principios básicos de la cristalización como proceso y de las estructuras de los sólidos cristalinos a partir de las ideas de periodicidad y simetría de las redes cristalinas. Se introduce al alumno a las técnicas de difracción.
Resolución de problemas y/o ejercicios	Se emplearán los seminarios para la preparación de trabajos prácticos asociados al proceso de crecimiento de cristales. y se tabajara con programas de resolucion de estructuras mediante difraccion y microscopía electronica
Otros	Se realizarán presentaciones por grupos con para exponer los resultados y principlaes conclusiones de los trabajos desarrollados por grupos acerca de los procesos de crecimiento cristalino. y caracterización estructural

Atención personalizada	Atención personalizada			
Metodologías	Descripción			
Trabajos tutelados	Estos trabajos se realizarán durante los seminarios utilizando programas cristalográficos en los que ese emplee la notación de simetría de Herman-Mauguin empleada en Cristalografía			
Resolución de problemas y/o ejercicios	Se desarrollaran en el aula de informática, durante los seminarios, empleando programas d edificación de rayos X y mediante el tratamiento de imágenes de microscopio electrónica de transmisión (HREM).			
Otros	Se desarrollarán en el aula de informática y en case teórica así como mediante l realización de tutorías o consultas empleando la plataforma Tema o el correo electrónico.			

Evaluación				
	Descripción	Calificación	Form	tados de nación y endizaje
Trabajos tutelado	osSe valorará que los conceptos explicados en la teoría sean empleados correctamente, así como la notación y nomenclatura cristalográfica. También aspectos como la coherencia en el desarrollo del trabajo y la precisión en las medidas y en la cuantificación de los resultados.	10	C1 C14 C27	D1 D3 D4 D5 D7 D8 D12 D13 D14
Resolución de problemas y/o ejercicios	Se valorará el grado de aprendizaje obtenido mediante los trabajos prácticos asociados la actividad realizada durante los seminarios	30	C1 C27	D3 D7 D9 D14 D15
Otros	Se valorará la exposición de las conclusiones obtenidas en los seminarios realizados acerca de la resolución de estructuras	20	C1	D1 D4 D8 D14
Pruebas de tipo test	se evaluará el grado de comprensión de los conceptos y definiciones cristalográficos, asociados a la parte teórica.	40	C1 C14	D1 D9 D14

Otros comentarios sobre la Evaluación

La evaluación en la segunda convocatoria consistirá en la realización de un ejercicio teórico acerca de los conceptos básicos de la Cristalografía y su aplicación a la resolución de estructuras, desarrollados durante las clases magistrales. Asimismo, será necesario realizar un ejercicio práctico en el manejo de las herramientas informáticas para el análisis de estructuras cristalinas empleadas durante el curso.

Fuentes de información

Bibliografía Básica

Andrew Putnis, Introduction to Mineral Sciences, 1ª,

Robert A. Evarestov, V.P. Smirnov, Site symmetry in cristals: theory and applications, 2ª,

Bibliografía Complementaria

Edward Tarbuck y Frederick Lutgens, Ciencias de la Tierra. Una introducción a la Geología Física, 8ª,

Christofer Hammond, The Basic of Crystallography and Diffraction, 3ª,

Jose Luis Amorós, El Cristal: morfología, estructura y propiedades físicas, 4º,

Rousseau, J.-J., Basic crystallography,

Vitalij K. Pecharsky, Peter Y. Zavalij, Fundamentals of powder diffraction and structural characterization of materials,

Douglas, Bodie E., Structure and chemistry of crystalline solids, 1ª,

Woolfson, M. M., An Introduction to X-ray crystallography, 2ª,

Salvador Galí Medina, Cristalografía: teoría particular, grupos puntuales y grupos espaciales, 1ª,

Recomendaciones

Asignaturas que continúan el temario

Química inorgánica I/V11G200V01404

Determinación estructural/V11G200V01501

Asignaturas que se recomienda cursar simultáneamente

Física: Física II/V11G200V01201

Matemáticas: Matemáticas II/V11G200V01203

Química, física y geología: Laboratorio integrado II/V11G200V01202

Química: Química II/V11G200V01204

Asignaturas que se recomienda haber cursado previamente

Biología: Biología/V11G200V01101 Física: Física I/V11G200V01102

Matemáticas: Matemáticas I/V11G200V01104

Química, física y biología: Laboratorio integrado I/V11G200V01103

Química: Química I/V11G200V01105	