Universida_{de}Vigo

Guía Materia 2015 / 2016

DATOS IDEN	TIFICATIVOS			
Mecánica de	Fluidos Avanzada			
Asignatura	Mecánica de Fluidos Avanzada			
Código	V04M155V01108			,
Titulacion	Máster Universitario en Ingeniería Térmica			
Descriptores	Creditos ECTS	Seleccione	Curso	Cuatrimestre
	3	OP	1	1c
Lengua Impartición				
Departamento				
Coordinador/a	Paz Penín, María Concepción			
Profesorado	Paz Penín, María Concepción			
Correo-e	cpaz@uvigo.es			
Web				
Descripción general				

Competencias

Código

- A2 Que los estudiantes sepan aplicar los conocimientos adquiridos y su capacidad de resolución de problemas en entornos nuevos o poco conocidos dentro de contextos más amplios (o multidisciplinares) relacionados con su área de estudio.
- Que los estudiantes sean capaces de integrar conocimientos y enfrentarse a la complejidad de formular juicios a partir de una información que, siendo incompleta o limitada, incluya reflexiones sobre las responsabilidades sociales y éticas vinculadas a la aplicación de sus conocimientos y juicios.
- A5 Que los estudiantes posean las habilidades de aprendizaje que les permitan continuar estudiando de un modo que habrá de ser en gran medida autodirigido o autónomo.
- B1 Incorporar nuevas tecnologías y herramientas avanzadas de la Ingeniería térmica/energética en sus actividades profesionales o investigadoras
- Poseer capacidad para diseñar, desarrollar, implementar, gestionar y mejorar productos, sistemas y procesos en los distintos ámbitos energéticos, usando técnicas analíticas, computacionales o experimentales avanzadas
- B3 Aplicar los conocimientos adquiridos para identificar, formular y resolver problemas en entornos nuevos o poco conocidos dentro de contextos multidisciplinares de la Ingeniería térmica/energética
- Disponer de habilidades, criterios y conocimientos para investigar, desarrollar e innovar en el campo de las máquinas térmicas y de fluidos, en los sistemas de producción de calor y frío, en sus aplicaciones a los sectores del transporte, residencial, plantas de potencia y a la industrial térmica y de fluidos en general en el ámbito industrial y residencial
- D1 Capacidad e iniciativa para tomar decisiones y evaluar soluciones alternativas o novedosas demostrando flexibilidad, rigor y profesionalidad
- D2 Capacidad de análisis, síntesis, capacidad de planificación y gestión de la información

Resultados de aprendizaje	
Resultados previstos en la materia	Resultados de
	Formación y
	Aprendizaje

Conocer la importancia de los flujos de fluidos complejos y sus aolicaciones practicas en la industria.	A2
	A3
	A5
	B1
	B2
	B3
	B5
	D1
	D2
Adquirir y desarrollar la capacidad de valorar los problemas de Mecánica de Fluidos que involucren flujos	A2
complejos, aplicar las leyes físicas pertinentes y aplicar los medios de resolución de las ecuaciones físicas	A3
resultantes.	A5
	B1
	B2
	B3
	B5
	D1
	D2

Contenidos	
Tema	
1. Flujo externo	1.1 Resistencia y sustentación.
	1.2 Aerodinámica de perfiles.
	Ejemplos prácticos:
	Flujo alrededor de un vehículo
	Aerodinámica de trenes de alta velocidad.
2. Flujo compresible	2.1 Flujo isentrópico unidimensional.
	2.2 Flujo isentrópico en toberas.
	2.3 Ondas de choque y ondas de expansión.
	2.4 Flujo de Rayleigh.
	2.5 Flujo adiabátioc en conductos con fricción.
	Ejemplos prácticos:
	Flujo en válvulas.
	Flujo en toberas.
3. Flujos multifásicos.	3.1 Flujos de gases con partículas.
-	3.2 Ebullición subenfriada: ebullición en recipiente y convección forzada.

Planificación			
	Horas en clase	Horas fuera de clase	Horas totales
Sesión magistral	8	25.336	33.336
Estudio de casos/análisis de situaciones	4	12.668	16.668
Resolución de problemas y/o ejercicios	6	19.002	25.002
Pruebas de respuesta larga, de desarrollo	3	0	3
Resolución de problemas y/o ejercicios	3	0	3

^{*}Los datos que aparecen en la tabla de planificación son de carácter orientativo, considerando la heterogeneidad de alumnado

Metodologías	
Metodologias	Descripción
Sesión magistral	Se explican los fundamentos de cada tema para su aplicación a la posterior resolución de casos prácticos. Se podrán realizar actividades como: Sesión magistral Lecturas
	Revisión bibliográfica Resumen Esquemas
	Conferencias Presentaciones
Estudio de casos/ana	álisis Se aplicarán los conceptos desarrollados de cada tema a la realización de prácticos. Se podrán
de situaciones	realizar actividades como: Casos prácticos Simulación Aprendizaje colaborativo

Resolución de Se aplicarán los conceptos desarrollados de cada tema a la resolución de problemas. Se podrán problemas y/o ejercicios realizar actividades como:

Problemas Test

Aprendizaje colaborativo

Metodologías	Descripción
Sesión magistral	El horario de tutorías se publicará en la plataforma de teledocencia al inicio del curso.
Estudio de casos/análisis de situaciones	El horario de tutorías se publicará en la plataforma de teledocencia al inicio del curso.
Resolución de problemas y/o ejercicios	El horario de tutorías se publicará en la plataforma de teledocencia al inicio del curso.

Evaluación					
	Descripción	Calificaci	ón Resu	Itados de	Formación y
				Aprend	lizaje
Pruebas de respuesta larga, de	Prueba escrita que podrá constar de:	60	A2	B1	D1
desarrollo	cuestiones teóricas		Α3	B2	D2
	cuestiones prácticas		A5	В3	
	resolución de ejercicios/problemas			B5	
	tema a desarrollar				
Resolución de problemas y/o	Resolución de problemas y/o ejercicios propuestos,	40	A2	B1	D1
ejercicios	que podrá incluir:		Α3	B2	D2
	- un número de entregas semanales (no presencial)		A5	В3	
	- una resolución de casos práctico presencial	,		B5	

Otros comentarios sobre la Evaluación

Fuentes de información
Frank M. White, Mecánica de Fluidos , VI,
Fluent User Guide,
Computational Fluid Dynamics: A Practical Approach,
Cengel&Cimbal, Mecánica de Fluidos ,

Recomendaciones